2279 Publications

Driven Similarity Renormalization Group with a Large Active Space: Applications to Oligoacenes, Zeaxanthin, and Chromium Dimer

Chenyang Li, Xiaoxue Wang, H. Zhai, Wei-Hai Fang

We present a new implementation of the driven similarity renormalization group (DSRG) based on a density matrix renormalization group (DMRG) reference. The explicit build of high-order reduced density matrices is avoided by forming matrix-product-state compressed intermediates. This algorithm facilitates the application of DSRG second- and third-order perturbation theories to dodecacene with an active space of 50 electrons in 50 orbitals. This active space appears the largest employed to date within the framework of internally contracted multireference formalism. The DMRG-DSRG approach is applied to several challenging systems, including the singlet-triplet gaps ($\Delta_{\rm ST}$) of oligoacenes ranging from naphthalene to dodecacene, the vertical excitation energies of zeaxanthin, and the ground-state potential energy curve (PEC) of Cr$_2$ molecule. Our best estimate for the vertical $\Delta_{\rm ST}$ of dodecacene is 0.22 eV, showing an excellent agreement with that of the linearized adiabatic connection method (0.24 eV). For zeaxanthin, all DSRG schemes suggest the order of $\rm 2\, ^1 A_g^- < 1\, ^1 B_u^+ < 1\, ^1 B_u^-$ for excited states. Both the equilibrium and the shoulder regions of the Cr$_2$ PEC are reasonably reproduced by the linearized DSRG with one- and two-body operators.

Show Abstract

Superfast Direct Inversion of the Nonuniform Discrete Fourier Transform via Hierarchically Semiseparable Least Squares

Heather Wilber, Ethan N. Epperly, A. Barnett

A direct solver is introduced for solving overdetermined linear systems involving nonuniform discrete Fourier transform matrices. Such matrices can be transformed into a Cauchy-like form that has hierarchical low rank structure. The rank structure of this matrix is explained, and it is shown that the ranks of the relevant submatrices grow only logarithmically with the number of columns of the matrix. A fast rank-structured hierarchical approximation method based on this analysis is developed, along with a hierarchical least-squares solver for these and related systems. This result is a direct method for inverting nonuniform discrete transforms with a complexity that is usually nearly linear with respect to the degrees of freedom in the problem. This solver is benchmarked against various iterative and direct solvers in the setting of inverting the one-dimensional type-II (or forward) transform, for a range of condition numbers and problem sizes (up to (4 10

Show Abstract

Formation of Drosophila germ cells requires spatial patterning of phospholipids

Marcus Kilwein, P. Miller, S. Shvartsman, et al.

Germline-soma segregation is crucial for fertility. Primordial germ cells (PGCs) arise early in development and are the very first cells to form in the Drosophila embryo. At the time of PGC formation, the embryo is a syncytium where nuclei divide within a common cytoplasm. Whereas invaginating plasma membrane furrows enclose nuclei to form somatic lineages during the 14th nuclear division cycle, PGCs emerge from the syncytium during the 9th division cycle in a mechanistically distinct process. PGC formation depends on maternally deposited germ granules localized at the embryo’s posterior pole. Germ granules trigger protrusion of membrane buds that enlarge to surround several nuclei that reach the posterior pole. Buds are remodeled to cells through mitotic division and constriction of the bud neck. Previous studies implicated F-actin,1 actin regulators,2,3 and contractile ring components4 in mitotic furrow formation, but what drives bud emergence and how germ granules provoke reshaping of the plasma membrane remain unknown. Here, we investigate the mechanism of germ-granule-induced bud formation. Treating the embryo as a pressurized elastic shell, we used mathematical modeling to examine possible mechanical mechanisms for local membrane protrusion. One mechanism, outward buckling produced by polymerization of a branched F-actin network, is supported by experimental data. Further, we show that germ granules modify membrane lipid composition, promoting local branched F-actin polymerization that initiates PGC formation. We propose that a mechanism for membrane lipid regulation of F-actin dynamics in migrating cells has been adapted for PGC formation in response to spatial cues provided by germ granules.

Show Abstract

InstaMap: instant-NGP for cryo-EM density maps

Geoffrey Woollard, P. Cossio, S. Hanson, et al.

Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.

Show Abstract

Active Hydrodynamic Theory of Euchromatin and Heterochromatin

Alex Rautu, Alexandra Zidovska, David Saintillan, M. Shelley

The genome contains genetic information essential for cell's life. The genome's spatial organization inside the cell nucleus is critical for its proper function including gene regulation. The two major genomic compartments -- euchromatin and heterochromatin -- contain largely transcriptionally active and silenced genes, respectively, and exhibit distinct dynamics. In this work, we present a hydrodynamic framework that describes the large-scale behavior of euchromatin and heterochromatin, and accounts for the interplay of mechanical forces, active processes, and nuclear confinement. Our model shows contractile stresses from cross-linking proteins lead to the formation of heterochromatin droplets via mechanically driven phase separation. These droplets grow, coalesce, and in nuclear confinement, wet the boundary. Active processes, such as gene transcription in euchromatin, introduce non-equilibrium fluctuations that drive long-range, coherent motions of chromatin as well as the nucleoplasm, and thus alter the genome's spatial organization. These fluctuations also indirectly deform heterochromatin droplets, by continuously changing their shape. Taken together, our findings reveal how active forces, mechanical stresses and hydrodynamic flows contribute to the genome's organization at large scales and provide a physical framework for understanding chromatin organization and dynamics in live cells.

Show Abstract
March 26, 2025

Recent Advances in Membrane Protein Simulations

James C. Gumbart, S. Hanson

imulating membrane proteins accurately combines two challenges into one: properly capturing the structure and dynamics of proteins as well as correctly representing the membrane environment in which they are usually embedded. Beginning with pioneering efforts in the 1980s and 1990s,1−7 both challenges have been met with increasing success over the years. Simulations of membrane proteins in realistic cellular contexts over many microseconds are now common.Concomitant advances in the determination of membrane protein structures, with over 50 unique structures determined 8 annually have further expanded the reach of simulations in this area. This Special Issue highlights a number of recent molecular dynamics (MD) simulations of membrane proteins and covers a wide range of applications and specialized techniques.

Show Abstract

Sampling From Multiscale Densities With Delayed Rejection Generalized Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is the mainstay of applied Bayesian inference for differentiable models. However, HMC still struggles to sample from hierarchical models that induce densities with multiscale geometry: a large step size is needed to efficiently explore low curvature regions while a small step size is needed to accurately explore high curvature regions. We introduce the delayed rejection generalized HMC (DR-G-HMC) sampler that overcomes this challenge by employing dynamic step size selection, inspired by differential equation solvers. In generalized HMC, each iteration does a single leapfrog step. DR-G-HMC sequentially makes proposals with geometrically decreasing step sizes upon rejection of earlier proposals. This simulates Hamiltonian dynamics that can adjust its step size along a (stochastic) Hamiltonian trajectory to deal with regions of high curvature. DR-G-HMC makes generalized HMC competitive by decreasing the number of rejections which otherwise cause inefficient backtracking and prevents directed movement. We present experiments to demonstrate that DR-G-HMC (1) correctly samples from multiscale densities, (2) makes generalized HMC methods competitive with the state of the art No-U-Turn sampler, and (3) is robust to tuning parameters.

Show Abstract

Level Set Teleportation: An Optimization Perspective

Aaron Mishkin, A. Bietti, R. M. Gower

We study level set teleportation, an optimization routine which tries to accelerate gradient descent (GD) by maximizing the gradient norm over a level set of the objective. While teleportation intuitively speeds-up GD via bigger steps, current work lacks convergence theory for convex functions, guarantees for solving the teleportation operator, and even clear empirical evidence showing this acceleration. We resolve these open questions. For convex functions satisfying Hessian stability, we prove that GD with teleportation obtains a combined sub-linear/linear convergence rate which is strictly faster than GD when the optimality gap is small. This is in sharp contrast to the standard (strongly) convex setting, where teleportation neither improves nor worsens convergence. To evaluate teleportation in practice, we develop a projected-gradient method requiring only Hessian-vector products. We use this to show that gradient methods with access to a teleportation oracle out-perform their standard versions on a variety of problems. We also find that GD with teleportation is faster than truncated Newton methods, particularly for non-convex optimization.

Show Abstract

A model for boundary-driven tissue morphogenesis

Daniel S. Alber, Alexandre O. Jacinto, S. Shvartsman, et al.

Tissue deformations during morphogenesis can be active, driven by internal processes, or passive, resulting from stresses applied at their boundaries. Here, we introduce the Drosophila hindgut primordium as a model for studying boundary-driven tissue morphogenesis. We characterize its deformations and show that its complex shape changes can be a passive consequence of the deformations of the active regions of the embryo that surround it. First, we find an intermediate characteristic triangular shape in the 3D deformations of the hindgut. We construct a minimal model of the hindgut primordium as an elastic ring deformed by active midgut invagination and germ band extension on an ellipsoidal surface, which robustly captures the symmetry-breaking into this triangular shape. We then quantify the 3D kinematics of the tissue by a set of contours and discover that the hindgut deforms in two stages: an initial translation on the curved embryo surface followed by a rapid breaking of shape symmetry. We extend our model to show that the contour kinematics in both stages are consistent with our passive picture. Our results suggest that the role of in-plane deformations during hindgut morphogenesis is to translate the tissue to a region with anisotropic embryonic curvature and show that uniform boundary conditions are sufficient to generate the observed nonuniform shape change. Our work thus provides a possible explanation for the various characteristic shapes of blastopore-equivalents in different organisms and a framework for the mechanical emergence of global morphologies in complex developmental systems.

Show Abstract
March 5, 2025

Chirped amplitude mode in photo-excited superconductors

Thomas Blommel, J. Kaye, Yuta Murakami, Emanuel Gull, Denis Golež

Using a state-of-the-art numerical scheme, we show that the Higgs mode under excitation exhibits chirped oscillations and exponential decay when fluctuations are included. This is in stark contrast to conventional BCS collisionless dynamics which predict power-law decay and the absence of chirping. The chirped amplitude mode enables us to determine the local modification of the effective potential even when the system is in a long-lived prethermal state. We then show that this chirped amplitude mode is an experimentally observable quantity since the photoinduced (super)current in pump-probe experiments serves as an efficient proxy for the order parameter dynamics, including the chirped dynamics. Our result is based on the attractive Hubbard model using dynamical mean-field theory within the symmetry-broken state after a excitation across the superconducting gap. Since the collective response involves long timescales, we extend the hierarchical low-rank compression method for nonequilibrium Green's functions to symmetry-broken states and show that it serves as an efficient representation despite long-lived memory kernels.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates